

TESTING FOR THE VERIFICATION OF COMPLIANCE OF PV INVERTER WITH : AS / NZS 4777.2:2015 GRID CONNECTION OF ENERGY SYSTEMS VIA INVERTERS (PART 2: INVERTER REQUIREMENTS)

Test Report Number	2219 / 0253 / E1 – M1
Trademark:	SUN 🔁 SYNK
Tested Model	SUNSYNK-5K-SG03LP1
APPLICANT Name Address	SunSynk Ltd. Flat A,3/F Wai Yip Industrial Building,171 Wai Yip Street, Kwun Tong,Hong Kong
TESTING LABORATORY Name:	SGS Tecnos, S.A. (Electrical Testing Laboratory)
Address	C/ Trespaderne, 29 - Edificio Barajas 1 28042 MADRID (Spain)
Conducted (tested) by	Roger Hu (Project Engineer)
Approved by	Jacobo Tevar (Technical Reviewer)
Date of issue	25/09/2019
Number of pages	151

Important Note:

- This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.
- This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Test	Report	Historical	Revision:
------	--------	-------------------	------------------

Test Report Version	Date	Resume
2219 / 0253 / E1 – M1	20/09/2019	First issuance based on reports 2219 / 0253 / E1 - M1 issued on 16/08/2019 to issue co-report. Editorial changes have been included to change the applicant, model no. and trademark references.

INDEX

1	SCOPE			
2	GENERAL INFORMATION			
	2.1	Testing Period and Climatic conditions	6	
	2.2	Equipment under Testing	6	
	2.3	Manufacturer and Factory information	8	
	2.4	Test equipment list	9	
	2.5	Measurement uncertainty	9	
	2.6	Test set up of the different standard	.10	
	2.7	Definitions	.11	
3	RESUME O	F TEST RESULTS	.12	
4	TEST RESU	JLTS	.14	
	4 1	Reference Network Impedance	14	
	42	Flectrical Safety	14	
	4.3	Provision for External Connections	14	
	4.4	PV Array earth fault / earth leakage detection	.14	
	4.5	Compatibility with Electrical Installation	.15	
	4.6	Power Factor	.18	
	4.7	Voltage guality measurements	.20	
	4.7.1	Current harmonics	.20	
	4.7.2	Voltage harmonics	.22	
	4.8	Flickers in continuous operation	.25	
	4.9	Transient Voltage Limits	.27	
	4.10	D.C. current injection	.30	
	4.11	Current Balance for Three – Phase Inverters	.31	
	4.12	Operational Modes and Multiple Mode Inverters	.32	
	4.12.1	Inverter Demand Response Modes (DRMs)	.32	
	4.12.2	Interaction with demand response enabling device (DRED)	.33	
	4.13	Inverter Power Quality Response Modes	.34	
	4.13.1	Volt Response Modes	.34	
	4.13.2	Fixed Power Factor Mode and Reactive Power Mode	.41	
	4.13.3	Characteristics Power Factor Curve for Cos φ (Power Response)	.50	
	4.13.4 1 11	Multiple mode inverter operation	.57	
	4.14 A 1A 1	Sinusoidal output in stand-alone mode	00.	
	4 14 2	Volt–watt response mode for charging of energy storage	63	
	4.15	Security of operational settings	.67	
	4.16	Automatic Disconnection Device	.67	
	4.17	Active Anti-Islanding protection	.68	
	4.17.1	Test A	.68	
	4.17.2	Test B	.69	
	4.17.3	Test C	.70	
	4.18	Voltage and Frequency Limits (Passive Anti-Islanding Protection)	.71	
	4.18.1	Voltage trip tests	.72	
	4.18.2	Frequency trip tests	.85	
	4.19	Sustained Operation for Voltage Variations	.96	
	4.19.1	Voltage trip value tests	.96	
	4.19.2	I rip time test	101	
	4.20	Sustained Operation for Frequency variations	103	
	4.20.1	Response to a decrease in trequency	103	
	4.20.2 1 21	Connection and Reconnection Procedure	115	
	⊤.∠ ۱ 1 01 1	Frequency Connection	115	
	4 21 2	Frequency Reconnection	119	
	4.21.3	Voltage Connection	123	
		-		

1 22	Security of Protection Settings	131	
4.22	Security of Protection Settings		
4.23	Multiple Inverter Combination	131	
4.24	Inverter Marking and Documentation		
5 PICTUR	RES		
6 ELECT	ELECTRICAL SCHEMES		

1 SCOPE

SGS Tecnos, S.A. (Electrical Testing Laboratory) has been contract by SunSynk Ltd., in order to issue a co-report based on report number 2219/0253/E1-M1 according to AS/NZS 4777.2: 2015: Grid connection of energy systems via inverters. Part 2: Inverter requirements. For the purpose of this test report, it has only been considered deviations for Australia.

2 GENERAL INFORMATION

2.1 Testing Period and Climatic conditions

The necessary testing has been performed along between the 6th of May and the 23rd of July of 2019. All the tests and checks have been performed at $25 \pm 5^{\circ}$ C, 96 kPa \pm 10 kPa and 40% RH \pm 10% RH.

SITE TEST

Name:	Shenzhen BALUN Technology Co., Ltd
Address	Block B, 1st FL, Baisha Science and Technology Park,
	Shahe Xi Road, Nanshan District, Shenzhen, Guangdong
	Province, P. R. China

2.2 Equipment under Testing

Apparatus type	:
Installation	:
Manufacturer	:
Trade mark	:
Model / Type reference	:
	•
Software Version	:
Rated Characteristics	:

Hybrid Inverter Fixed (permanent connection) NingBo Deye Inverter Technology Co.,Ltd

SUN 🔁 SYNK

SUNSYNK-5K-SG03LP1

1907044001 (See point 5 of this report)

HMI: Verc308 MAIN: Ver0108 PV side: 100-500Vdc, MPPT Input Voltage: 125-425Vdc, 6000W max Battery side: 48Vdc (40-60Vdc), 125Ad.c.Max AC output: 230Vac, 50Hz, 21.7Aa.c.(Rated), 25Aa.c.(Max), Rated 5000W, Maximum 5500W. AC back-up: 230Vac, 50Hz, 21.7Aa.c.(Rated), 25Aa.c.(Max), 5500W.

Date of manufacturing: 2019

Test item particulars	
Input:	PV, AC and Batteries
Output	AC
Class of protection against electric shock :	Class I
Degree of protection against moisture :	IP 65
Type of connection to the main supply:	Single phase – Fixed installation
Cooling group:	FAN
Modular :	No
Internal Transformer:	No

2. Label is attached on the side surface of enclosure and visible after installation.

Equipment under testing:

- SUNSYNK-5K-SG03LP1

The variants models are:

- SUNSYNK-3.6K-SG03LP1

The variants models have been included in this test report without tests because the following features don't change regarding to the tested model:

- Same connection system and hardware topology
- Same control algorithm.
- Output power within 2.5 and 2/3 of the EUT or Modular inverters.
- Same Firmware Version.

The results obtained apply only to the particular sample tested that is the subject of the present test report. The most unfavorable result values of the verifications and tests performed are contained herein.

Throughout this report a point (comma) is used as the decimal separator.

2.3 Manufacturer and Factory information

Manufacturer Name:	NingBo Deye Inverter Technology Co.,Ltd		
Manufacturer Address	No.26 South YongJiang Road, Daqi, Beilun, NingBo,Zhejiang, China.		
Factory Name	NingBo Deye Inverter Technology Co.,Ltd No.26 South YongJiang Road, Daqi, Beilun, NingBo,Zhejiang, China.		

2.4 Test equipment list

	No.	No. Equipment Name MARK/Model No.		Equipment No.	Equipment calibration due date
	1	Digital oscilloscope	Tektronix / MS04054B	BZ-EP-L016	2020/02/25
	2	Current clamp	HIOKI / CT6863-05	BZ-EP-L006	2020/02/27
	3	Current clamp	HIOKI / CT6863-05	BZ-EP-L007	2020/02/27
	4	Current clamp	HIOKI / CT6863-05	BZ-EP-L008	2020/02/27
Balun	5	Current clamp	HIOKI / CT6863-05	BZ-EP-L009	2020/02/27
	6	Differential probe	CYBERTEK / DP6130	BZ-SFT-L079	2019/11/04
	7	Power analyzer	HIOKI / PW6001-16	BZ-EP-L005	2020/02/26
	8	Power analyzer	ZLG / PA6006H	BZ-EP-L051	2019/11/04
	9	Temperature & Humidity meter	SMART SENSOR / AR827	01769263	2019/11/04
SGS	10	True RMS Multimeter	Fluke / 289C	SHES100602 (15100038)	2020/01/06

2.5 Measurement uncertainty

Associated uncertainties through measurements showed in this this report are the maximum allowable uncertainties.

Magnitude	Uncertainty	
Voltage measurement	±1.5 %	
Current measurement	±2.0 %	
Frequency measurement	±0.2 %	
Time measurement	±0.2 %	
Power measurement	±2.5 %	
Phase Angle	±1°	
Temperature	±3° C	
Note1: Measurements uncertainties showed in this table are maximum allowable uncertainties. The measurement uncertainties associated with other parameters measured during the tests are in the		
laboratory at disposal of the solicitant.		
Note2: Where the standard requires lower uncertainties that those in this table. Most restrictive uncertainty has been considered.		

2.6 Test set up of the different standard

Below is the simplified construction of the test set up.

Different equipment has been used to take measures as it shows in chapter 2.3. Current and voltage clamps have been connected to the inverter input/output for all the tests.

All the tests described in the following pages have used this specified test setup.

EQUIPMENT	MARK / MODEL	RATED CHARACTERISTICS	OWNER / ID.CODE
AC source	Kewell / KACM- 75-33	Voltage: 0-600 V 75kVA	Balun/BZ-EP-L001
PV source	Kewell / IVS- 60KW	Voltage: 0 - 1000 V 60kW	Balun/BZ-EP-L002
Programmable ac load	QUNLING / ACLT-3820	Voltage: 0-600 V 60kVA	Balun/BZ-EP-L003
DRED Testing fixture		AS/NZS 4777.2:2015 I1	Interterk / ST127-14

The test bench used includes:

2.7 Definitions

EUT	Equipment Under Testing	Hz	Hertz
A	Ampere	V	Volt
VAr	Volt-Ampere reactive	W	Watt
Un	Nominal Voltage	In	Nominal current
Pn	Nominal Active Power	Sn	Nominal Apparent Power
Qn	Nominal Reactive Power	p.u	Per unit
V1+	Voltage Positive Sequence	11+	Current Positive Sequence
V1-	Voltage Negative Sequence	11-	Current Negative Sequence
Uv	Voltage Imbalance	Ui	Current Imbalance
DRM	Demand Response Mode	THD	Total Harmonic Distortion
lh	Harmonic Current	Uh	Harmonic Voltage
PST	Severity of Flicker Short-Term	PLT	Severity of Flicker Long-Term
dc	Maximum Variation of Voltage	d(t)	Variation of Voltage
DRED	Demand Response Enabling	d max	Maximum Absolute Value of
	Device		Voltage Variation

3 RESUME OF TEST RESULTS

INTERPRETATION KEYS

Test object does meet the requirement:	Р	Pass
Test object does not meet the requirement:	F	Fails
Test case does not apply to the test object:	N/A	Not applicable
To make a reference to a table or an annex:	See ad	ditional sheet
To indicate that the test has not been realized:	N/R	Not realized

STANDARD	STANDARD REQUIREMENTS		
SECTION	AS/NZS 4777.2:2015	RESULT	
A.5	Reference network impedance	Р	
	Network impedance	Р	
5	General Requirements	Р	
5.1	Electrical safety	Р	
5.2	Provision for External Connections	Р	
5.3	PV Array earth fault/earth leakage detection	Р	
5.4	Compatibility with electrical installation	Р	
5.5	Power Factor	Р	
5.6	Harmonics		
	Harmonics Current	Р	
	Harmonics Voltage	Р	
5.7	Flickers	Р	
5.8	Transient voltage limits	Р	
5.9	DC Current Injection	Р	
5.10	Current Balance for Three-phase inverters	N/A	
6	Operational modes and Multiple mode inverters	Р	
6.2	Inverter Demand Response Modes (DRMs)	Р	
6.2.1	General	Р	
6.2.2	Interaction with Demand Response Enabling Device (DRED)	Р	
6.3	Inverter Power quality response modes	Р	
6.3.2	Volt response modes	Р	
6.3.2.2	Volt-Watt response mode	Р	
6.3.2.3	Volt-Var response mode	Р	
6.3.2.4	Voltage balanced modes	Р	
6.3.3	Fixed power factor mode and reactive power mode	Р	
6.3.4	Characteristics power factor curve for $\cos \phi$ (P) (Power response)	Р	
6.3.5	Power rate limit	Р	
6.3.5.3.3	Changes in a.c. operation and control	N/A	
6.3.5.3.4	Changes in energy source operation	N/A	
6.4	Multiple mode inverter operation	N/A	
6.4.2	Sinusoidal output in stand-alone mode (Harmonics voltage)	P	
6.4.3	Volt-Watt response mode for charging of energy storage	P	
6.5	Security	P	
7	Protective functions for connection to electrical installations and the grid	Р	
7.2	Automatic disconnection device	Р	
7.3	Active Anti-Islanding protection	Р	
7.4	Voltage and frequency limits (passive anti-islanding protection)	P	
7.5	Limits for sustained operation.	P	
7.5.2	Sustained operation for voltage variations	P	
7.5.3	Sustained operation for frequency variations	P	
7.5.3.1	Response to an increase in frequency	P	
	Response to a decrease in frequency	P	
7.5.3.2	Response to a decrease in grid frequency with energy storage	P	

STANDARD	STANDARD REQUIREMENTS	
SECTION	AS/NZS 4777.2:2015	RESULI
7.6	Disconnection on external signal	Р
7.7	Connection and reconnection procedure	Р
7.8	Security of protection settings	Р
8	Multiple inverter combination	N/A
8.2	Inverter current balance across multiple phases	N/A
8.3	Grid Disconnection	N/A
8.4	Grid Connection and Reconnection	N/A
8.5.1	Single-phase combinations	N/A
8.5.2	Single-phase inverters used in three-phase combinations	N/A
8.5.3	Required Tests for Multiple Inverter Combination	N/A
8.5.4	Multiple Inverters with one Automatic Disconnection Device	N/A
9	Inverter marking and documentation	Р

Note: The declaration of conformity has been evaluated taking into account the IEC Guide 115.

4 TEST RESULTS

4.1 **REFERENCE NETWORK IMPEDANCE**

The network reference impedance used during the tests has been of:

 $R_A = 0.24$ Ohms; $X_A = j 0.15$ Ohms at 50 Hz; $R_N = 0.16$ Ohms; $X_N = j 0.10$ Ohms at 50 Hz.

4.2 ELECTRICAL SAFETY

As required per the Clause 5.1 of the standard, inverters for use in energy systems with photovoltaic (PV) arrays, the inverters shall comply with the appropriate electrical safety requirements. The compliances with these requirements are stated in the following test reports:

• IEC 62109-1 and IEC 62109-2: test report nº BL-SZ1998124-B01 on 2019/04/22 issued by Shenzhen BALUN Technology Co., Ltd.

4.3 **PROVISION FOR EXTERNAL CONNECTIONS**

The inverter complies with the requirements according to Clause 5.2 of the standard.

4.4 **PV ARRAY EARTH FAULT / EARTH LEAKAGE DETECTION**

The compliances with these requirements are stated in the following test reports:

 IEC 62109-1 and IEC 62109-2: test report nº BL-SZ1998124-B01 on 2019/04/22 issued by Shenzhen BALUN Technology Co., Ltd.

4.5 COMPATIBILITY WITH ELECTRICAL INSTALLATION

According to the requirements stated in the clause 5.4 of the standard, it has been verified that the inverter is able to operate with AC voltage and frequency limits specified in AS 60038 (for Australia).

The inverter shall stay connected providing the maximum of its available active power working in abnormal voltage and/or frequency conditions.

The following tables show the results of the tests performed:

Test 1		Under Frequency			
Voltage	Frequency	Active Power measured	Minimum Operation Time	Time measured	
100%Un	47.1Hz	99.5%Pn	Continuous Operation	> 5 min	
Disconnection		×	NO 🗆 YES		

Test 2		Under Voltage			
Voltage	Frequency	Active Power measured	Minimum Operation Time	Time measured	
94%Un	50.0Hz	99.4%Pn	Continuous Operation	> 5 min	
Disconnection		Σ	NO 🗆 YES		

Test 3		Over Voltage + Over Frequency			
Voltage	Frequency	Active Power measured	Minimum Operation	Time	
Voltage	requeries	Addred ower medsured	Time	measured	
110%Un	50.25Hz	99.5%Pn	Continuous Operation	> 5 min	
Disconnection		NO 🗆 YES			

(*) The measured value of active power is calculated as the average of the samples taken each 200 ms during the corresponding measured time.

4.6 POWER FACTOR

The power factor has been measured according to Clause 5.5 and the annex B of the standard, with an initial power factor at unity.

As the inverter is capable of different power factor settings, the test has been repeated varying the power factor within the range 0.8 leading to 0.8(*) lagging.

(*)0.8 leading to 0.8 lagging is more restrictive than 0.95 as the standard required.

The maximum tolerance allowed for the measured Power Factor is \pm 0.01, for measurements from 25%Sn.

The following table and graphs show test results for measurements of power factor set to unity (PF=1):

Unity Power Factor (PF=1.0)					
P Desired (%Sn)	P measured (%Sn)	Q measured (%Sn)	Power Factor desired	Power Factor measured	Power Factor Deviation
(,,	(,,	(,,	(cos φ)	(cos φ)	(cos φ)
3%	3.0	3.4	1.000	0.670	-0.330
8%	8.1	3.5	1.000	0.916	-0.084
10%	10.1	3.6	1.000	0.942	-0.058
15%	15.0	4.1	1.000	0.964	-0.036
18%	18.0	4.3	1.000	0.972	-0.028
20%	20.0	4.3	1.000	0.978	-0.022
25%	25.0	3.1	1.000	0.993	-0.007
28%	28.3	3.4	1.000	0.993	-0.007
30%	30.2	3.5	1.000	0.993	-0.007
33%	33.2	3.5	1.000	0.995	-0.005
37%	37.3	3.8	1.000	0.995	-0.005
40%	39.9	5.3	1.000	0.991	-0.009
43%	42.8	6.0	1.000	0.990	-0.010
47%	46.7	6.0	1.000	0.992	-0.008
50%	49.8	6.1	1.000	0.993	-0.007
53%	52.8	6.3	1.000	0.993	-0.007
57%	56.8	6.1	1.000	0.994	-0.006
60%	59.7	6.3	1.000	0.995	-0.005
63%	62.7	6.3	1.000	0.995	-0.005
67%	66.6	6.2	1.000	0.996	-0.004
70%	69.8	6.5	1.000	0.996	-0.004
75%	74.7	7.7	1.000	0.995	-0.005
78%	77.7	7.5	1.000	0.995	-0.005
80%	79.7	7.5	1.000	0.996	-0.004
84%	83.6	8.0	1.000	0.995	-0.005
87%	86.6	7.7	1.000	0.996	-0.004
90%	89.6	7.9	1.000	0.996	-0.004
92%	91.6	8.0	1.000	0.996	-0.004
94%	93.6	7.9	1.000	0.996	-0.004
96%	95.6	73	1.000	0.997	-0.003
98%	97.5	8.2	1 000	0.996	-0.004
100%	99.5	8.8	1.000	0.996	-0.004

Unity Power Factor (PF=1.0)

4.7 VOLTAGE QUALITY MEASUREMENTS

4.7.1 Current harmonics

The current harmonics have been measured according to the Clause 5.6 of the standard, at the required power values.

	Limit	50% of rated current	100% of rated current
Eliminate order	% of fundamental	% of fundamental	% of fundamental
2	1.0%	0.60%	0.26%
3	4.0%	3.19%	1.88%
4	1.0%	0.49%	0.27%
5	4.0%	2.65%	1.51%
6	1.0%	0.51%	0.31%
7	4.0%	1.76%	1.26%
8	1.0%	0.30%	0.27%
9	2.0%	1.08%	1.03%
10	0.5%	0.06%	0.19%
11	2.0%	0.65%	0.69%
12	0.5%	0.17%	0.04%
13	2.0%	0.41%	0.56%
14	0.5%	0.19%	0.06%
15	1.0%	0.32%	0.48%
16	0.5%	0.11%	0.07%
17	1.0%	0.40%	0.36%
18	0.5%	0.14%	0.05%
19	1.0%	0.43%	0.28%
20	0.5%	0.16%	0.04%
21	0.6%	0.41%	0.21%
22	0.5%	0.13%	0.03%
23	0.6%	0.47%	0.16%
24	0.5%	0.13%	0.05%
25	0.6%	0.40%	0.10%
26	0.5%	0.10%	0.02%
27	0.6%	0.36%	0.06%
28	0.5%	0.09%	0.04%
29	0.6%	0.25%	0.05%
30	0.5%	0.08%	0.02%
31	0.6%	0.13%	0.05%
32	0.5%	0.06%	0.05%
33	0.6%	0.05%	0.05%
34		0.05%	0.02%
35		0.04%	0.06%
36		0.03%	0.04%
37		0.05%	0.06%
38		0.04%	0.03%
39		0.06%	0.07%
40		0.04%	0.03%
THD		2.481%	3.178%

4.7.2 Voltage harmonics

The background voltage harmonics have been verified according to the Clause 5.6 (Appendix C) of the standard, into AC terminals of the grid source.

The test results are shown in the graphic and the table below.

Voltage Source Harmonics					
N#/Ordor	Limit U _h	Measured U _h			
Nr/Order	(%fundamental)	(%fundamental)			
2	0.20	0.132			
3	0.90	0.857			
4	0.20	0.080			
5	0.40	0.104			
6	0.20	0.045			
7	0.30	0.127			
8	0.20	0.027			
9	0.20	0.086			
10	0.20	0.032			
11	0.10	0.080			
12	0.10	0.025			
13	0.10	0.018			
14	0.10	0.017			
15	0.10	0.032			
16	0.10	0.010			
17	0.10	0.007			
18	0.10	0.003			
19	0.10	0.003			
20	0.10	0.007			
21	0.10	0.008			
22	0.10	0.007			
23	0.10	0.003			
24	0.10	0.003			
25	0.10	0.003			
26	0.10	0.002			
27	0.10	0.002			
28	0.10	0.003			
29	0.10	0.007			
30	0.10	0.001			
31	0.10	0.002			

Voltage Source Harmonics					
Na/Orden	Limit U _h	Measured U _h			
Nr/Order	(%fundamental)	(%fundamental)			
32	0.10	0.002			
33	0.10	0.001			
34	0.10	0.003			
35	0.10	0.001			
36	0.10	0.000			
37	0.10	0.002			
38	0.10	0.002			
39	0.10	0.001			
40	0.10	0.001			
41	0.10	0.002			
42	0.10	0.001			
43	0.10	0.000			
44	0.10	0.000			
45	0.10	0.002			
46	0.10	0.001			
47	0.10	0.002			
48	0.10	0.001			
49	0.10	0.001			
50	0.10	0.001			
THD((%fundamental)	5.00	0.897			

4.8 FLICKERS IN CONTINUOUS OPERATION

Measurements of voltage fluctuations in continuous operation have been measured according to the Clause 5.7 of the standard.

Limits considered are: 1.0 for Pst, 0.65 for Plt, 3.3% for dc and 4% for dmax measurements, according to the standard IEC 61000-3-11: 2017.

Test done at 100%Pn					
Pn(%)	Limit	33 %	66 %	100 %	
PST	≤ 1.0	0.675	0.349	0.688	
PLT	≤ 0.65	0.508	0.232	0.569	
dc [%]	≤ 3.30	0.737	0.096	0.185	
dmax [%]	4	3.565	3.006	3.991	

As it can be seen in the next screenshots, this test has 12 steps. The values took of Pst, Plt, dc and dmax are the most unfavorable of the 12 steps.

Running operation 66% Pn							
Ticke Flicke	er Mode icker	Range Over U1 U2 U3 U4 U5 U I1 I2 I3 I4 I5 I	Spd Sca 6 17 Trq A	ling 🔲 Line Filte AVG 🚃 Freq Filte	r Integral : Re	set	CH: 1 2 4 5 6
	Fla ve	Count Interval			12/12 Con 00:00s/10:00s	nplete	COMP EXT Element 1 U1 600 Yms
	Volt f Un Freq	Range 600 (Set) 230. (U2) 50.0	V/50Hz 000∨ 12Hz	Element2 Total (Element2)	Judgement Judgement	Pass Pass	Line Strand Stra
	Limit	dc[%] 3.30	dmax[%] 4.00	d(t)[ms] 500 3.30%	Pst 1.00	Plt 0.65 N:12	Element 3 U3 600 Vrms 13 50 Arms
	No. 1 2 3	0.060 Pass 0.062 Pass 0.096 Pass	2.191 Pass 2.179 Pass 2.263 Pass	0.0 Pass 0.0 Pass 0.0 Pass	0.349 Pass 0.289 Pass 0.274 Pass		Liement 4 U4 600 Vrms I4 50 Arms Element 5
	4567	0.062 Pass 0.054 Pass 0.052 Pass 0.074 Pass	2.242 Pass 1.899 Pass 3.006 Pass 2.474 Pass	0.0 Pass 0.0 Pass 0.0 Pass 0.0 Pass	0.301 Pass 0.289 Pass 0.263 Pass 0.242 Pass		U5 600 Yrms I5 50 Arms Element 6
	8 9 10	0.094 Pass 0.096 Pass 0.069 Pass 0.078 Pass	2.114 Pass 2.114 Pass 1.989 Pass 2.018 Pass	0.0 Pass 0.0 Pass 0.0 Pass 0.0 Pass	0.242 Pass 0.195 Pass 0.260 Pass 0.178 Pass		U6 600 Vrms I6 50 Arms Element 7
	11 12 Result	0.067 Pass 0.079 Pass Pass	2.770 Pass 2.008 Pass Pass	0.0 Pass 0.0 Pass Pass	0.267 Pass 0.180 Pass Pass	0.232 Pass	07 500 Vms 17 50 Arms – Integral : Reset Time
Update: 0					Runtime: 5:04:5	70% 🖗 x1	
			Runni	ng operatio	on 100% Ph		
The State S	er Mode icker	Range Over U1 U2 U3 U4 U5 U 11 12 13 14 15 1	Spd Sca 6 17 Trq A	ling Line Filte	r Tintegral : Res	set	CH: 1 2 4 5 6
Flicke	er Mode icker	Range Over U1 U2 U3 U4 U5 U 11 12 13 14 15 1 Count Interval	6 U7 Spd Sca 6 17 Trq A	ling Line Filte	r Integral : Re 12/12 Con 00:00s/10:00s	set	CH: 1 2 4 5 6 COMP EXI
Z Flicke Fli	er Mode icker Elem	Range Over UT UZ U3 U4 U5 U IT I2 I3 I4 I5 I Count Interval Parco 600	Spd Sca 6 17 Trq A	ling Line Filte AVG Freq Filte	12/12 Con 00:00s/10:00s	set	CH: 1 2 4 5 6 COMP EX Element 1 U1 600 Vrms I 50 Arms
Flicke Fli	er Mode icker Elem Volt I Un Freq	Range Over U1 U2 U3 U4 U5 I1 I2 I3 I4 I5 Count Interval Interval Interval ent 1 Range 600 (Set) 230. (U1) 50.0	Spd Sca 6 17 Trq A V/50Hz 000V 15Hz	ling Line Filte AVG Freq Filte Element1 Total (Element1)	12/12 Con 00:00s/10:00s Judgement Judgement	set nplete Pass Pass	CH: 1 2 4 5 6 Element 1 U1 680 Vrms 1 50 Arms Element 2 U2 680 Vrms 12 50 Arms
Flicke Fli	er Mode icker Elem Volt F Un Freq	Range Over U1 U2 U3 U4 U5 U 11 I2 I3 I4 I5 I Count Interval ent 1 Range 600 (Set) 230. (U1) 50.0 dc[%] 3.30	Spd Sca Trq A V/50Hz 000V 15Hz dmax[%] 4.00	ling Line Filte AVG Freq Filte Element1 Total (Element1) d(t)[ms] 500 3.30%	12/12 Con 00:00s/10:00s Judgement Judgement 1.00	set Pass Pass Pass Plt 0.65 N:12	CH: 1 2 4 5 6 COMP EXI Element 1 U1 600 Yrms 11 50 Arms 12 50 Arms 12 50 Arms 13 50 Arms 13 50 Arms
Flicke Fli	Elem Volt I Un Freq Limit No. 1 2 3	Range Over U1 U2 U3 U4 U5 U I1 I2 I3 I4 I5 I Count Interval Interval Range 600 (Set) 230. (U1) 50.0 dc[%] 3.30 0.072 Pass 0.090 Pass 0.094 Pass	Spd Sca Trq A Trq A V/50Hz 000V 15Hz dmax[%] 4.00 2.791 Pass 2.896 Pass 3.884 Pass	ling Line Filte AVG Freq Filte Element1 Total (Element1) d(t)[ms] 500 3.30% 0.0 Pass 0.0 Pass 0.0 Pass	Integral : Res 12/12 Con 00:00s/10:00s Judgement Judgement Judgement 0.507 Pass 0.581 Pass 0.584 Pass	set Pass Pass Pass Plt 0.65 N:12	CH: 1 2 4 5 6 COMP EXT Element 1 U1 600 Yms 11 50 Arms Element 2 U3 600 Yms 13 50 Arms Element 4 U4 600 Yms
Flicke Fli	Elem Volt F Un Freq Limit No. 1 2 3 4 5 6	Range Over U1 U2 U3 U4 U5 U I1 I2 I3 I4 I5 I Count Interval Interval Interval Interval I Range 600 (Set) 230. (U1) 50.0 dc[%] 3.30 I	Spd Sca Trq A Trq A V/50Hz 000V 15Hz 2.791 Pass 2.896 Pass 3.884 Pass 3.882 Pass 3.852 Pass 3.852 Pass 3.941 Pass	ling Line Filte AVG Freq Filte Element1 Total (Element1) d(t)[ms] 500 3.30% 0.0 Pass 0.0 Pass 0.0 Pass 0.0 Pass 0.0 Pass 0.0 Pass 0.0 Pass	Integral : Res 12/12 Con 00:00s/10:00s Judgement Judgement Judgement 0.507 Pass 0.581 Pass 0.504 Pass 0.582 Pass 0.601 Pass	set Pass Pass Plt 0.65 N:12	CH: 1 2 4 5 6 Element 1 U1 600 Yms Element 2 U2 600 Yms I2 50 Arms Element 3 U3 600 Yms I3 50 Arms Element 4 U4 600 Yms I4 50 Arms Element 5 U5 600 Yms
Flicke Fli	Elem Volt F Un Freq Limit No. 1 2 3 4 5 6 7 8 9	Range Over UI U2 U3 U4 US U II I2 I3 I4 IS I Count Interval Count Interval Count Interval Count Interval Count Interval Count Interval Count Interval Interval Count Interval Interval Interva	Spd Sca Trq A Trq A Trq A V/50Hz 000V 15Hz dmax[%] 4.00 2.791 Pass 2.896 Pass 3.884 Pass 3.852 Pass 3.882 Pass 3.882 Pass 3.941 Pass 2.275 Pass 2.246 Pass 3.909 Pass 2.246 Pass	ling Line Filte AVG Freq Filte Element1 Total (Element1) d(t)[ms] 500 3.30% 0.0 Pass 0.0 Pass	Integral : Res 12/12 Con 00:00s/10:00s Judgement Judgement Judgement 0.507 Pass 0.581 Pass 0.584 Pass 0.504 Pass 0.504 Pass 0.601 Pass 0.688 Pass 0.586 Pass 0.683 Pass 0.683 Pass 0.683 Pass 0.683 Pass	set Pass Pass Plt 0.65 N:12	CH: 1 2 4 5 6 COMP EXT Element 1 U1 600 Vrms 1 50 Arms 2 50 Arms 1 50 Arms 1 50 Arms 1 50 Arms Element 4 U4 600 Vrms 1 50 Arms Element 5 U5 600 Vrms 1 50 Arms Element 5 U5 600 Vrms 1 50 Arms Element 7 Element 7
Flicke Fli	Elem Volt I Un Freq Limit No. 1 2 3 4 5 6 7 8 9 10 11 12 Result	Range Over UI U2 U3 U4 US U Interval Count Interval Interval<	Spd Sca Trq A Trq A Trq A V/50Hz 000V 15Hz dmax[%] 4.00 2.791 Pass 2.896 Pass 3.884 Pass 3.884 Pass 3.882 Pass 3.884 Pass 3.882 Pass 2.776 Pass 3.941 Pass 3.909 Pass 2.246 Pass 3.909 Pass 3.909 Pass 3.991 Pass	ling Line Filte AVG Freq Filte Element1 Total (Element1) d(t)[ms] 500 3.30% 0.0 Pass 0.0 Pass	Integral : Res 12/12 Con 00:00s/10:00s Judgement Judgement Judgement 0:005/10:00s Judgement 0:005/10:00s Judgement 0:005/10:00s Judgement 0:005/10:00s Judgement 0.507 Pass 0.584 Pass 0.504 Pass 0.502 Pass 0.601 Pass 0.586 Pass 0.586 Pass 0.588 Pass 0.608 Pass	set Pass Pass Plt 0.65 N:12 0.569 Pass	CH: 1 2 4 5 6 COMP EXT Element 1 U1 600 Vrms 11 50 Arms U2 600 Vrms 12 50 Arms U3 600 Vrms 13 50 Arms Element 4 U4 50 Arms Element 4 U5 600 Vrms 15 50 Arms Element 7 U5 600 Vrms 15 50 Arms Element 7 U7 600 Vrms 17 50 Arms
Flicke Fli	Elem Volt T Un Freq Limit No. 1 2 3 4 5 6 7 8 9 10 11 12 Result	Range Over UT U2 U3 U4 US U Interval Interv	Spd Sca Trq Trq Trq A V/50Hz 000V 15Hz 4.00 2.791 Pass 3.884 Pass 3.852 Pass 2.776 Pass 2.775 Pass 2.776 Pass 3.941 Pass 2.781 Pass 3.991 Pass 3.991 Pass	ling Line Filte AVG Freq Filte Element1 Total (Element1) d(t)[ms] 500 3.30% 0.0 Pass 0.0 Pass	Integral : Ref 12/12 Con 00:00s/10:00s Judgement Judgement Judgement Judgement Sold 0.507 Pass 0.584 Pass 0.504 Pass 0.504 Pass 0.504 Pass 0.601 Pass 0.688 Pass 0.583 Pass 0.584 Pass 0.608 Pass 0.688 Pass 0.584 Pass 0.688 Pass 0.586 Pass 0.587 Pass 0.588 Pass	set Pass Pass Pass PIt 0.65 N:12 0.569 Pass	CH: 1 2 4 5 6 COMP EXT Element 1 U1 600 Vrms 11 50 Arms U2 600 Vrms 12 50 Arms U3 600 Vrms 13 50 Arms Element 4 U4 600 Vrms 13 50 Arms Element 4 U4 600 Vrms 15 50 Arms Element 6 U5 600 Vrms 16 50 Arms Element 7 U7 600 Vrms 17 50 Arms Element 7 U7 600 Vrms 18 50 Arms Composition (Composition

4.9 **TRANSIENT VOLTAGE LIMITS**

The purpose of this test is to verify that the inverter complies with the transient voltage limits specified below when the grid is disconnected from the inverter.

The transient voltage limits have been measured according to the Clause 5.8 of the standard and it has been used the following circuit:

The resistor value per phase (R) has been calculated according to standard AS/NZS 4777.2:2015:

- The resistor is equivalent to 0.1% of the rated apparent power of the inverter.

Measurements have been verified at three different active power levels, 10%Pn, 50%Pn and 100%Pn. Test results are offered in following pages.

Overvoltage value measured (V)					
Duration (c)					
Duration (S)	100% Pn	50% Pn	10% Pn	Limit	RESULI
0.0002	-88	48	64	±910	Р
0.0006	-32	16	32	±710	Р
0.002	16	-24	-8	±580	Р
0.006	8	-24	0	±470	Р
0.02	8	-16	-8	±420	Р
0.06	8	-8	-8	±390	Р
0.2	-8	-8	-8	±390	Р
0.6	0	0	0	±390	Р

4.10 D.C. CURRENT INJECTION

The verification of DC component emission is required according to the clause 5.9 of the standard, at the specified active power levels.

	Min ~ 20%Pn	Medium ~ 60%Pn	Max ~ 100%Pn
Inverter Current (A)	4.459	13.066	21.085
Max. Test value (mA)	-7	29	-30
Limited (mA)	109	109	109

4.11 CURRENT BALANCE FOR THREE – PHASE INVERTERS

The verification of Current Balance test has been measured according to the clause 5.10 of the standard.

It is not applicable due to the inverter is single phase.

4.12 OPERATIONAL MODES AND MULTIPLE MODE INVERTERS

4.12.1 Inverter Demand Response Modes (DRMs)

The inverter demand response mode DRM 0 has been tested according to Clause 6.2.1 of the standard. The inverter shall detect and initiate a response to the demand response commands within 2 s.

The DRED (Demand Response Enabling Device) connection circuit used for this test is:

The test procedure followed has been the same as specified in the point I.2 of the standard and it is described in the following points together with test results:

a) With S9 switched closed and the inverter operating at $100\% \pm 5\%$ of its rated current output, if the DRED switch S0 is asserted the unit shall disconnect.

b) Opening the switch S9 again the inverter shall disconnect.

4.12.2 Interaction with demand response enabling device (DRED)

The inverter shall have a means of connecting to a DRED. This means of connection shall include a terminal block or RJ45 socket. The terminal block or RJ45 socket shall comply with the minimum electrical specifications in Table 6. The terminal block or RJ45 socket may be physically mounted in the inverter or in a separate device that remotely communicates with the inverter.

RJ45 provided. No tests needed.

4.13 Inverter Power Quality Response Modes

The inverter power quality response modes tests have been measured according to Clause 6.3 of the standard.

The different operating modes available in the inverter and evaluated are the following:

- -Volt response modes.
- -Fixed power factor or reactive power mode.
- -Power response mode.
- -Power rate limit.

4.13.1 Volt Response Modes

Volt response modes tests have been measured according to Clause 6.3.2 of the standard. The voltage values applied for the tests of the Clauses 6.3.2.2, 6.3.2.3 and 6.3.2.4 are the following:

Reference	Australia. default value (% Un)	Range (% Un)
V1	90.0%	Not applicable
V2	95.6%	93.9%Un to 100.0%Un
V3	108.7%	102.1%Un to 110.9%Un
V4	115.2%	106.1%Un to 115.2%Un

4.13.1.1 Volt – Watt Response Mode

Volt – Watt Response Mode has been measured according to Clauses 6.3.2.2 (PV Systems) at the required voltage and power points of operation.

The volt-watt response mode varies the output power of the inverter in response to the abnormal voltage at its terminal.

The curve required for volt-watt response mode for PV systems is defined by the picture below according to point 6.3.2.2 of the standard.

Two different tests have been performed to verify that the inverter volt-watt response is in accordance with the standard. These two curves tested prove also that volt-watt control function is configurable to different curves:

The setting values for voltage and power in the inverter have been the following:

Reference	Test 1 (for A	ustralia setting)	Test 2 (for New Zealand setting)		
	Volt. (V)	Power (%Pn)	Volt. (V)	Power (%Pn)	
V1	207	100%	207	100%	
V2	220	100%	220	100%	
V3	250	100%	244	100%	
V4	265	20%	255	20%	

Voltage desired (%Un)	Voltage Measured (%Un)	Active Power desired (%Pn)	Active Power Measured (%Pn)	Active Power Deviation (%Pn)
90.0	90.1	100.0	99.4	-0.6
95.0	95.2	100.0	99.4	-0.6
100.0	100.3	100.0	99.4	-0.6
102.0	102.3	100.0	99.4	-0.6
104.0	104.3	100.0	99.4	-0.6
106.0	106.3	100.0	99.4	-0.6
108.0	108.3	100.0	92.5	-7.5
110.0	110.3	80.3	70.6	-9.7
112.0	112.2	57.0	49.6	-7.4
114.0	114.0	35.0	28.9	-6.1
115.0	115.0	20.0	20.1	0.1

4.13.1.1.2 Test 2 (for New Zealand setting)

Voltage desired (%Un)	Voltage Measured (%Un)	Active Power desired (%Pn)	Active Power Measured (%Pn)	Active Power Deviation (%Pn)
90	90.2	100	99.2	-0.8
96	95.9	100	99.3	-0.7
100	100.3	100	99.3	-0.7
104	104.3	100	99.3	-0.7
106	106.0	100	99.0	-1.0
108	107.3	79.7	99.0	19.3
109	109.0	51.3	60.9	9.6
110	109.8	37.9	48.6	10.7

(*) The desired value of active power has not been reached due to limitations in the maximum current of the inverter.

4.13.1.2 Volt –Var Response Mode

Volt – Var Response Mode has been measured according to Clause 6.3.2.3 of the standard, at the required voltage and VAr points of operation.

The default VAr level (30% lagging/leading) has been tested as following:

Q = 30 % Sn						
Voltage Desired (%Un)	Voltage Measured (%Un)	Reactive Power desired (%Sn)	Reactive Power Measured (%Sn)	Reactive Power Deviation (%Sn)		
85	85.2	30.0	30.3	0.3		
90	90.3	30.0	31.3	1.3		
92	91.3	18.0	18.5	0.5		
95	94.8	0.0	3.7	3.7		
100	100.1	0.0	4.9	4.9		
102	102.2	0.0	5.2	5.2		
104	104.3	0.0	5.7	5.7		
108	106.5	0.0	6.1	6.1		
110	110.0	-6.2	-6.8	-0.6		
112	112.7	-15.7	-15.5	0.2		
115	116.0	-30.0	-31.0	-1.0		

4.13.1.3 Voltage Balance Modes

The requirement of Voltage Balance Modes test has to be verified according to the clause 6.3.2.4 of the standard.

It is not applicable due to the inverter is single phase.

4.13.2 Fixed Power Factor Mode and Reactive Power Mode

The verification of reactive power supply capability test has been measured according to the clause 6.3.3 of the standard.

Three different tests have been done:

- Test 1: Rectangular Curve Q fixed (Q=±30% Sn)
- Test 2: Triangular Curve PF fixed (PF=±0.8)
- Test 3: Semicircular Curve S fixed (S=100% Sn)

4.13.2.1 Test 1: Rectangular Curve (Q =±30%Sn)

This test verifies the capability of the inverter to provide a fixed value of reactive power. In addition, it is verified the Q control mode.

At high active power levels the reactive power provided by the inverter is automatically limited by the inverter in order to protect against over current.

Allowed tolerance to be considered is 5%Sn when possible.

The following table shows the test results:

Rectangular Curve (Q=30.0%Sn / Inductive)						
P Desired	P measured	Q desired	Q measured	Q Deviation	Power Factor	
(%Sn)	(%Sn)	(%Sn)	(%Sn)	(%Sn)	(cos φ)	
0%	0.1	30.0(*)	3.4		0.022	
3%	3.1	30.0(*)	3.6		0.654	
8%	8.2	30.0(*)	3.9		0.904	
10%	10.1	30.0(*)	3.9		0.931	
15%	15.1	30.0(*)	10.3		0.826	
18%	18.0	30.0(*)	12.8		0.816	
20%	20.4	30.0(*)	14.8		0.809	
25%	25.2	30.0(*)	18.6	-11.4	0.805	
28%	28.2	30.0(*)	21.1	-8.9	0.801	
30%	30.0	30.0(*)	22.3	-7.7	0.803	
33%	33.1	30.0(*)	24.6	-5.4	0.803	
37%	37.1	30.0	28.2	-1.8	0.796	
40%	39.7	30.0	30.7	0.7	0.791	
43%	42.7	30.0	31.4	1.4	0.806	
47%	46.6	30.0	31.0	1	0.833	
50%	49.6	30.0	30.9	0.9	0.848	
53%	52.6	30.0	31.1	1.1	0.861	
57%	56.6	30.0	31.0	1	0.877	
60%	59.6	30.0	30.6	0.6	0.889	
63%	62.6	30.0	31.4	1.4	0.894	
67%	66.5	30.0	30.7	0.7	0.908	
70%	69.5	30.0	30.9	0.9	0.914	
75%	74.4	30.0	30.8	0.8	0.924	
78%	77.4	30.0	30.8	0.8	0.929	
80%	79.4	30.0	30.6	0.6	0.933	
84%	83.4	30.0	31.4	1.4	0.936	
89%	88.3	30.0	32.6	2.6	0.938	
94%	93.3	30.0	31.1	1.1	0.949	
97%	96.3	30.0	30.4	0.4	0.954	
100%	100.2	30.0	31.7	1.7	0.953	

Rectangular Curve (Q=30.0%Sn / Capacitive)						
P Desired	P measured	Q desired	Q measured	Q Deviation	Power Factor	
(%Sn)	(%Sn)	(%Sn)	(%Sn)	(%Sn)	(cos φ)	
0%	0.0	-30.0(*)	3.5		0.014	
3%	3.1	-30.0(*)	3.6		0.652	
8%	8.1	-30.0(*)	3.9		0.901	
10%	10.2	-30.0(*)	3.9		0.933	
15%	15.1	-30.0(*)	-6.0		0.930	
18%	18.2	-30.0(*)	-8.2		0.911	
20%	20.5	-30.0(*)	-10.0		0.898	
25%	25.2	-30.0(*)	-18.6	11.4	0.804	
28%	28.2	-30.0(*)	-21.1	8.9	0.802	
30%	30.4	-30.0(*)	-22.3	7.7	0.807	
33%	33.4	-30.0(*)	-24.6	5.4	0.805	
37%	37.4	-30.0	-27.4	2.6	0.807	
40%	40.7	-30.0	-30.4	-0.4	0.801	
43%	43.2	-30.0	-32.3	-2.3	0.800	
47%	46.9	-30.0	-30.5	-0.5	0.838	
50%	49.8	-30.0	-31.4	-1.4	0.846	
53%	52.8	-30.0	-31.2	-1.2	0.861	
57%	56.7	-30.0	-31.0	-1.0	0.877	
60%	59.7	-30.0	-31.1	-1.1	0.887	
63%	62.6	-30.0	-31.6	-1.6	0.893	
67%	66.6	-30.0	-30.9	-0.9	0.907	
70%	69.5	-30.0	-31.0	-1.0	0.913	
75%	74.6	-30.0	-31.0	-1.0	0.924	
78%	77.6	-30.0	-31.0	-1.0	0.928	
80%	79.5	-30.0	-31.0	-1.0	0.932	
84%	83.5	-30.0	-31.1	-1.1	0.937	
89%	88.5	-30.0	-31.5	-1.5	0.942	
94%	93.4	-30.0	-30.8	-0.8	0.950	
97%	96.3	-30	-31.3	-1.3	0.951	
100%	99.4	-30	-31.1	-1.1	0.954	

(*) When operating in this mode for all inverter current outputs below 33% of rated current, it is acceptable for the displacement power factor to be controlled such that the vars supplied or drawn are limited.

Test results are represented at diagrams below.

4.13.2.2 Test 2: Triangular Curve (PF=±0.8)

This test verifies the capability of the inverter to provide a fixed value of power factor. In addition it is verified the PF control mode.

At high active power levels the reactive power provided by the inverter is automatically limited by the inverter in order to protect against over current.

The maximum tolerance allowed for the measured Power Factor is \pm 0.01, for measurements from 25%Sn.

Fixed Power Factor (PF=0.80 / Inductive)						
B Desired	B measured	Omencured	Power Factor	Power Factor	Power Factor	
P Desireu	P measureu	(% Sp)	desired	measured	Deviation	
(%31)	(%31)	(%31)	(cos φ)	(cos φ)	(cos φ)	
3%	3.1	3.7	0.800	0.639	-0.161	
8%	8.1	3.7	0.800	0.908	0.108	
10%	10.1	3.9	0.800	0.933	0.133	
15%	15.0	10.3	0.800	0.823	0.023	
18%	17.9	12.6	0.800	0.819	0.019	
20%	19.9	14.3	0.800	0.813	0.013	
25%	24.9	18.4	0.800	0.804	0.004	
28%	27.8	20.6	0.800	0.803	0.003	
30%	29.8	22.2	0.800	0.802	0.002	
33%	32.8	24.5	0.800	0.801	0.001	
37%	36.7	27.6	0.800	0.799	-0.001	
40%	39.8	29.6	0.800	0.802	0.002	
43%	42.7	32.3	0.800	0.798	-0.002	
47%	46.7	34.8	0.800	0.801	0.001	
50%	49.7	37.8	0.800	0.796	-0.004	
53%	52.7	39.9	0.800	0.798	-0.002	
57%	56.5	43.0	0.800	0.795	-0.005	
60%	59.4	44.3	0.800	0.801	0.001	
63%	62.5	47.9	0.800	0.794	-0.006	
67%	66.4	50.6	0.800	0.795	-0.005	
70%	69.4	53.1	0.800	0.794	-0.006	
75%	74.1	56.6	0.800	0.795	-0.005	
78%	77.0	58.4	0.800	0.797	-0.003	
80%	79.3	61.3	0.800	0.791	-0.009	
84%	83.4	56.4	0.800	0.829 (*)	0.029	
87%	86.4	50.3	0.800	0.864 (*)	0.064	
90%	89.8	46.1	0.800	0.889 (*)	0.089	
92%	91.8	40.3	0.800	0.916 (*)	0.116	
94%	93.9	35.3	0.800	0.936 (*)	0.136	
96%	95.7	30.9	0.800	0.952 (*)	0.152	
98%	97.6	20.8	0.800	0.978 (*)	0.178	
100%	99.5	18.2	0.800	0.984 (*)	0.184	

The following table shows the test results:

(*) The inverter does not reach the fixed power factor value of 0.8 due to the current limitation function.

The following table and graphs show test results for measurements of power factor set to 0.80 capacitive:

Fixed Power Factor (PF=0.80 / Capacitive)						
P Desired (%Sn)	P measured (%Sn)	Q measured (%Sn)	Power Factor desired	Power Factor measured	Power Factor Deviation (cos @)	
3%	3.0	34	0.800	0.661	-0 139	
8%	8.0	3.6	0.800	0.913	0.100	
10%	10.1	-1.9	0.800	0.982	0 182	
15%	15.0	-5.4	0.800	0.941	0 141	
18%	18.0	-7.8	0.800	0.918	0.118	
20%	19.9	-9.4	0.800	0.903	0.103	
25%	25.0	-18.8	0.800	0.799	-0.001	
28%	28.1	-21.2	0.800	0.798	-0.002	
30%	30.0	-22.3	0.800	0.803	0.003	
33%	32.9	-24.7	0.800	0.799	-0.001	
37%	37.0	-28.2	0.800	0.795	-0.005	
40%	40.4	-30.0	0.800	0.803	0.003	
43%	42.9	-32.4	0.800	0.798	-0.002	
47%	46.7	-34.0	0.800	0.809	0.009	
50%	50.2	-36.6	0.800	0.808	0.008	
53%	52.8	-38.9	0.800	0.805	0.005	
57%	56.6	-41.1	0.800	0.810	0.010	
60%	60.4	-44.9	0.800	0.803	0.003	
63%	62.6	-45.4	0.800	0.810	0.010	
67%	67.5	-50.2	0.800	0.802	0.002	
70%	69.7	-51.6	0.800	0.804	0.004	
75%	75.0	-54.3	0.800	0.810	0.010	
78%	78.1	-59.1	0.800	0.797	-0.003	
80%	79.6	-58.9	0.800	0.804	0.004	
84%	83.3	-56.0	0.800	0.830 (*)	0.030	
87%	86.3	-50.0	0.800	0.865 (*)	0.065	
90%	89.4	-46.4	0.800	0.888 (*)	0.088	
92%	91.3	-39.8	0.800	0.917 (*)	0.117	
94%	93.4	-35.9	0.800	0.934 (*)	0.134	
96%	95.3	-29.0	0.800	0.957 (*)	0.157	
98%	97.2	-24.1	0.800	0.971 (*)	0.171	
100%	99.7	-15.6	0.800	0.988 (*)	0.188	

(*) The inverter does not reach the fixed power factor value of 0.8 due to the current limitation function.

4.13.2.3 Test 3: Semicircular Curve (S=100%Sn)

SGS

This test verifies the capability of the inverter to provide a fixed value of apparent power.

Allowed tolerance for reactive power measurements is to be considered inside $\pm 5\%$ Sn when active power more than 25%

The test is waived due to the manufacturer don't provided this operation mode.

4.13.3 Characteristics Power Factor Curve for Cos φ (Power Response)

The Characteristic Power Factor Curve for $\cos \phi$ (Power response) has been measured according to the Clause 6.3.4 of the standard. Three tests have been done to verify an adjustable curve from PF inductive to PF capacitive.

These tests have been performed as detailed in following table:

Test Nº	Poin	t P1	Point P2		
rootri	Active Power (%Sn)	Power Factor	Active Power (%Sn)	Power Factor	
1	20%	0.95	90%	-0.95	
2	20%	0.90	90%	-0.90	
3	20%	0.95	80%	-0.95	

For all tests above detailed, the unity power factor is reached at 50%Pn.

There is allowed a maximum tolerance for power factor measurement inside ± 0.01 .

4.13.3.1 Test 1

In this test it is verified that the power factor vary linearly from PF = 0.95 (inductive) at 20%Pn, PF = 1 at 50%Pn, PF = 0.95 (capacitive) at 90%Pn. The following table shows the obtained test results:

P Desired (%Sn)	P measured (%Sn)	Q measured (%Sn)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	Power Factor Deviation (cos φ)
20	20.0	6.0	0.950	0.956	0.006
30	29.9	6.9	0.967	0.974	0.007
40	39.8	7.4	0.983	0.983	0.000
50	49.8	-6.7	1.000	0.998	-0.002
60	59.7	-6.6	0.988	0.994	0.006
70	69.6	-13.8	0.975	0.975	0.000
80	79.5	-23.2	0.963	0.963	0.000
90	89.4	-29.3	0.950	0.950	0.000

4.13.3.2 Test 2

In this test it is verified that the power factor vary linearly from PF = 0.90 (inductive) at 20%Pn, PF = 1 at 50%Pn, PF PF = 0.90 (capacitive) at 90%Pn. The following table shows the obtained test results:

P Desired (%Sn)	P measured (%Sn)	Q measured (%Sn)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	Power Factor Deviation (cos φ)
20	20.0	9.6	0.900	0.901	0.001
30	29.9	11.3	0.933	0.935	0.002
40	39.8	9.6	0.967	0.972	0.005
50	49.8	6.5	1.000	0.992	-0.008
60	59.7	-14.4	0.975	0.976	0.001
70	69.6	-22.9	0.950	0.950	0.000
80	79.5	-34.2	0.925	0.919	-0.006
90	89.3	-43.5	0.900	0.899	-0.001

4.13.3.3 Test 3

In this test it is verified that the power factor vary linearly from PF = 0.95 (inductive) at 20%Pn to PF = 0.95 (capacitive) at 80%Pn. The following table shows the obtained test results:

P Desired (%Sn)	P measured (%Sn)	Q measured (%Sn)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	Power Factor Deviation (cos φ)
20	20.0	6.1	0.950	0.957	0.007
30	29.9	8.1	0.967	0.965	-0.002
40	39.8	6.4	0.988	0.982	-0.006
50	49.8	-6.5	1.000	0.992	-0.008
60	59.7	-11.1	0.983	0.983	0.000
70	69.6	-20.1	0.967	0.961	-0.006
80	79.6	-25.9	0.950	0.951	0.001
90	89.5	-29.4	0.950	0.950	0.000

4.13.4 Power rate limit

According to the Clause 6.3.5 of the standard, the equipment shall have the capability to gradually increase its output power when requested.

The maximum NL (Nonlinearity) shall be less 10% according to standard.

Gradients have ability to set from 4%Pn/min to 100%Pn/min by the control system of the inverter. Test results are offered in the table and pictures below:

Increase of Active Power						
Gradient (ΔP) desired	Nominal Ramp	Gradient measured	Measured Ramp time (s)			
(%P _n /min)	Time (s)	(%P _n /min)				
4%	1500	3.7%	1626.4			
16.7%	360	18.0%	332.8			
100%	60	100.0%	60.0			

4.14 MULTIPLE MODE INVERTER OPERATION

The inverter power quality response modes tests have been measured according to Clause 6.4 of the standard.

The following operating modes are evaluated:

- Sinusoidal output in stand-alone mode
- Volt watt response mode for charging of energy storage

Test results are offered in the following pages:

4.14.1 Sinusoidal output in stand-alone mode

Volt response modes tests have been measured according to Clause 6.4.2 of the standard.

Voltage Harmonics							
Nr/Order	Limit U _h	U _h at 5%Pn	U _h at 50%Pn	U _h at 100%Pn			
Ni/Order	(%fundamental)	(%fundamental)	(%fundamental)	(%fundamental)			
2	5.000	0.160	0.148	0.200			
3	5.000	0.531	0.612	0.700			
4	5.000	0.139	0.121	0.112			
5	5.000	0.331	0.278	0.211			
6	5.000	0.020	0.019	0.022			
7	5.000	0.101	0.055	0.059			
8	5.000	0.041	0.036	0.014			
9	5.000	0.088	0.070	0.038			
10	5.000	0.063	0.085	0.090			
11	5.000	0.058	0.072	0.072			
12	5.000	0.013	0.011	0.011			
13	5.000	0.079	0.072	0.077			
14	5.000	0.012	0.005	0.017			
15	5.000	0.019	0.023	0.034			
16	5.000	0.044	0.039	0.025			
17	5.000	0.074	0.069	0.066			
18	5.000	0.001	0.003	0.003			
19	5.000	0.049	0.041	0.037			
20	5.000	0.022	0.017	0.016			
21	5.000	0.014	0.014	0.014			
22	5.000	0.003	0.008	0.005			
23	5.000	0.032	0.030	0.043			
24	5.000	0.003	0.002	0.007			
25	5.000	0.028	0.016	0.002			

Voltage Harmonics					
Nr/Ordor	Limit U _h	U _h at 5%Pn	U _h at 50%Pn	U _h at 100%Pn	
NI/Order	(%fundamental)	(%fundamental)	(%fundamental)	(%fundamental)	
26	5.000	0.008	0.009	0.003	
27	5.000	0.014	0.013	0.015	
28	5.000	0.008	0.010	0.011	
29	5.000	0.058	0.065	0.064	
30	5.000	0.005	0.004	0.003	
31	5.000	0.015	0.017	0.023	
32	5.000	0.011	0.012	0.011	
33	5.000	0.009	0.010	0.012	
34	5.000	0.001	0.003	0.006	
35	5.000	0.032	0.028	0.030	
36	5.000	0.003	0.005	0.004	
37	5.000	0.018	0.013	0.009	
38	5.000	0.009	0.010	0.010	
39	5.000	0.009	0.010	0.008	
40	5.000	0.003	0.004	0.005	
41	5.000	0.024	0.029	0.030	
42	5.000	0.002	0.002	0.005	
43	5.000	0.006	0.006	0.011	
44	5.000	0.004	0.006	0.009	
45	5.000	0.004	0.004	0.006	
46	5.000	0.000	0.001	0.002	
47	5.000	0.013	0.010	0.007	
48	5.000	0.001	0.002	0.002	
49	5.000	0.007	0.005	0.003	
50	5.000	0.005	0.004	0.003	
THD(%U _n)	5.000	0.700	0.730	0.794	

4.14.2 Volt - watt response mode for charging of energy storage

Volt response modes tests have been measured according to Clause 6.4.3 of the standard.

Two different tests have been performed to verify that the inverter volt-watt response is in accordance with the standard. These two curves tested prove also that volt-watt control function is configurable to different curves:

The setting values for voltage and power in the inverter have been the following:

Reference	Test 1 Set points		Test 2 Set points	
	Volt. (%Un)	Power (%Pn)	Volt. (%Un)	Power (%Pn)
V1	90.0%	0%	90.0%	0%
V2	93.9%	100%	100.0%	100%
V3	108.7%	100%	108.7%	100%
V4	110.0%	100%	110.0%	100%

4.14.2.1 Test 1

Voltage desired (%Un)	Voltage Measured (%Un)	Active Power desired (%Pn)	Active Power Measured (%Pn)	Active Power Deviation (%Pn)
90.0	90.0	0	0	0
91.0	91.5	25.6	27.7	2.1
92.0	92.2	51.3	52.0	0.7
93.0	93.3	76.9	79.2	2.3
94.0	94.0	100.0	98.5	-1.5
96.0	96.0	100.0	98.8	-1.2
100.0	100.0	100.0	98.9	-1.1
105.0	105.0	100.0	98.9	-1.1
110.0	110.1	100.0	100.0	0

4.14.2.2 Test 2

Voltage desired (%Un)	Voltage Measured (%Un)	Active Power desired (%Pn)	Active Power Measured (%Pn)	Active Power Deviation (%Pn)
90.0	89.8	0.0	0	0
91.0	91.1	10.0	10.9	0.9
92.0	92.1	20.0	21.6	1.6
93.0	93.0	30.0	29.7	-0.3
94.0	94.0	40.0	39.7	-0.3
96.0	96.0	60.0	59.8	-0.2
100.0	100.0	100.0	98.5	-1.5
105.0	105.0	100.0	98.9	-1.1
110.0	110.0	100.0	99.0	-1.0

4.15 SECURITY OF OPERATIONAL SETTINGS

According to the Clause 6.5 of the standard, it has been verified by inspection that changes to the internal setting may require the use of a tool and special instructions not provided to unauthorized personnel.

4.16 AUTOMATIC DISCONNECTION DEVICE

It has been verified that the automatic disconnection device meets the requirements stated in the Clause 7.2 of the standard.

This automatic disconnection device is in compliance with the following points:

- Is capable to withstand an impulse voltage that could occur at the point of installation and has the appropriate contact gap.
- It doesn't indicate falsely that contacts are open.
- It is installed and designed to prevent unintentional closure that can be caused by events such as impacts or vibration.
- It has devices that disconnects on all live conductors (active and neutral) of the inverter from the grid.
- It is ensured that in case of single fault, there is simple separation.
- It is ensured that in case of single fault, power is prevented to entering the grid.
- It is capable of interrupting the rated current of the equipment.
- The settings of the automatic disconnection don't exceed the capability of the inverter.
- There are not used solid-state semiconductors for isolation purposes.

4.17 ACTIVE ANTI-ISLANDING PROTECTION

Test performed according to IEC 62116. The method used to provide active anti-islanding is frequency instability.

It has been done three different tests,

- Test A (Active Power >90% Pn and Input Voltage > 75% Vdc)
- Test B (Active Power 50-66% Pn and Input Voltage 50±10% Vdc)
- Test C (Active Power 25-33% Pn and Input Voltage < 20% Vdc)

The maximum trip time is 2 s.

Note: In the tables below, M(%) and N(%) are respectively referred to active and reactive power impedance variation as percentage.

4.17.1 Test A

Balanced Load		
M (%) N (%)		Disconnection (ms) (limit at t=2s)
-5	+5	468
-5	0	676
-5	-5	344
0	+5	680
0	0	1028
0	-5	420
+5	+5	452
+5	0	604
+5	-5	456

4.17.2 Test B

Balanced Load		
M (%)	N (%)	Disconnection (ms) (limit at t=2s)
0	-5	692
0	-4	788
0	-3	924
0	-2	440
0	-1	600
0	0	520
0	1	544
0	2	456
0	3	416
0	4	336
0	5	292

4.17.3 Test C

Balanced Load		
M (%)	N (%)	Disconnection (ms) (limit at t=2s)
0	-5	144
0	-4	154
0	-3	140
0	-2	154
0	-1	161
0	0	145
0	1	36
0	2	157
0	3	141
0	4	49
0	5	38

4.18 VOLTAGE AND FREQUENCY LIMITS (PASSIVE ANTI-ISLANDING PROTECTION)

Voltage and frequency limits (Passive Anti-islanding Protection) have been verified according to the Clause 7.4 of the standard.

The inverter should remain in continuous and uninterrupted operation for voltage and frequency variations with duration shorter than the trip delay time specified in the next table:

Protective function	Protective function limit	Trip delay time	Maximum disconnection time
Undervoltage (V<)	180 V	1 s	2 s
Overvoltage 1 (V>)	260 V	1 s	2 s
Overvoltage 2 (V>>)	265 V		0.2 s
Under-frequency (F<) 47 Hz (Australia) 45 Hz (New Zealand)		1 s	2 s
Over-frequency (F>)	52 Hz	_	0.2 s

Voltage limits stated by the standard have been expressed as a percentage of 230V and applied to the rated values of the family of inverters contemplated in this report.

Each test should be repeated 3 times.

Following indications shall be taken into account to for test results offered in this point.

For trip tests evaluation it is considered the time from when the voltage or frequency, as proceed, is stabilized at the setting value to the instant when the inverter is effectively disconnected and with no current.

For frequency trip tests evaluation, in order to have a bigger accuracy it has been evaluated and represented the first period of the sine wave where the frequency surpasses the frequency limit and from that first period has been evaluated the tripping time.

For these cases, a second graph representing the "trip value" is offered. In them cursors are allocated among the beginning and the end of a period of the voltage sine wave, measuring the time that lasts the whole period and allowing calculating the frequency of the period.

4.18.1 Voltage trip tests

To asses that the protective function of the inverter against abnormal voltage is effective two different kinds of tests have been done:

- Trip value tests to evaluate if the inverter can trip with accuracy in accordance with a settling value of voltage.
- Trip time tests to evaluate if the inverter can trip into the limits of time stated by the standard in case of detecting voltage levels out of the limits stated.

The standard states that the tolerance limit for voltage trip values is ± 2 V, which is a 0.8% Un over 230 V, the reference voltage considered by the standard. So 0.8% Un is the allowed tolerance to be considered for voltage trip value tests.

4.18.1.1 Voltage trip value tests

The tests have been made as the following procedure:

- For undervoltage protection (U<): Starting from a voltage level 1% Un above the trip value of the protection function to be tested, the voltage is decreased 1V in steps of at least 5 seconds.
- For overvoltage protection (U>): Starting from a voltage level 1% Un below the trip value of the protection function to be tested, the voltage is increased 1V in steps of at least 5 seconds.
- For overvoltage protection (U>>): Starting from a voltage level 1% Un below the trip value of the protection function to be tested, the voltage is increased 1V in steps of at least 5 seconds. Disable overvoltage protection (U>) function during the test.

Test results	are	offered	in	the	following table	
1001100410	aio	0110100			Tono wing tubio	•

		No Trip Test		Trip Test		
Protective Function Tested	Start Voltage value (%Un)	Time measured per step (s)	Trip	Voltage Trip settling value (%Un)	Trip	Voltage trip value measured (%Un)
U < (Rep 1)	79.5%	>5.00	⊠ NO □ YES	78.3%	□ NO ⊠ YES	77.9%
U < (Rep 2)	79.5%	>5.00	⊠ NO □ YES	78.3%	□ NO ⊠ YES	78.1%
U < (Rep 3)	79.5%	>5.00	⊠ NO □ YES	78.3%	□ NO ⊠ YES	78.1%
U > (Rep 1)	112.0%	>5.00	⊠ NO □ YES	113.0%	□ NO ⊠ YES	113.2%
U > (Rep 1)	112.0%	>5.00	⊠ NO □ YES	113.0%	□ NO ⊠ YES	113.3%
U > (Rep 3)	112.0%	>5.00	⊠ NO □ YES	113.0%	□ NO ⊠ YES	113.3%
U > > (Rep 1) (*)	114.0%	>5.00	⊠ NO □ YES	115.0%	□ NO ⊠ YES	115.7%
U > > (Rep 1) (*)	114.0%	>5.00	⊠ NO □ YES	115.0%	□ NO ⊠ YES	115.7%
U > > (Rep 3) (*)	114.0%	>5.00	⊠ NO □ YES	115.0%	□ NO ⊠ YES	115.6%

Maximum deviation allowed in voltage trip value is $\pm 0.8\%$ Un.

(*) Disable overvoltage protection (U>) function during the test.

Test results are graphically shown in following pages.

4.18.1.2 Voltage trip time tests

The tests have been made as the following procedure:

- For undervoltage protection (U<): Maintaining the voltage with a value 100%Un during at least 1.5 seconds and then change the frequency to 78.2%Un with a step. Trip time shall take place in less than 2 seconds and more than 1s.
- For overvoltage protection (U>): Maintaining the voltage with a value 112.5%Un during at least 1.5 seconds and then change the frequency to 113.0%Un with a step. Trip time shall take place in less than 2 seconds and more than 1s.
- For overvoltage protection (U>>): Maintaining the voltage with a value 114.5%Un during at least 0.5 seconds and then change the frequency to 115.0%Un with a step. Trip time shall take place in less than 0.2 seconds.

Protective		No Trip Test		Trip Test			
Function	Voltage	Time		Voltage		Trip time	
Tested	value (%LIn)	measured	Trip	settling	Trip	measured	
resteu	value (70011)	(s)		value (%Un)		(ms)	
II < (Rep 1)	78 5%	<u>\15</u>	⊠ NO	78.2%	□ NO	1150	
0 < (Rep 1)	10.570	21.0	□ YES	10.270	⊠ YES	1150	
II < (Rep 2)	78 5%	<u>\15</u>	⊠ NO	78.2%	□ NO	1140	
0 < (Rep 2)	70.070	21.0	□ YES	70.270	🛛 YES	1140	
< (Pop 3)	78 5%	<u>\15</u>	⊠ NO	78 2%	□ NO	1090	
0 < (itep 3)	76.5%	>1.5	□ YES	10.2%	🛛 YES		
> (Pop 1)	112.5%	>1.5	⊠ NO	113.0%	□ NO	1040	
0 > (itep 1)			□ YES		🛛 YES		
> (Rep 2)	112 5%	<u>\15</u>	⊠ NO	113.0%	□ NO	1012	
0 > (Rep 2)	112.570	21.0	□ YES	110.070	⊠ YES	1012	
> (Rep 3)	112 5%	<u>\15</u>	⊠ NO	113.0%	□ NO	1016	
0 > (Rep 3)	112.070	21.0	□ YES	113.070	🛛 YES	סוטו	
> > (Rep 1)	11/ 5%	<u>\</u> 05	⊠ NO	115.0%	□ NO	196	
0 > > (Kep I)	114.570	2 0.0	□ YES	113.070	⊠ YES	130	
> > (Rep 2)	114 5%	> 0 5	⊠ NO	115.0%	□ NO	180	
0 > > (Rop 2)	114.070	2 0.0	□ YES	110.070	⊠ YES	100	
II > > (Rep 3)	114 5%	> 0 5	⊠ NO	115.0%	□ NO	176	
0 / / (Nep 3)	114.070	/ 0.0	□ YES	110.070	⊠ YES	170	

Test results are offered in the following table:

Test results are graphically shown in the graph below and in the following page.

4.18.2 Frequency trip tests

To asses that the protective function of the inverter against abnormal frequency is effective two different kinds of tests have been done:

- Trip value tests, to evaluate if the inverter can trip with accuracy in accordance with a settling value of frequency.
- Trip time tests, to evaluate if the inverter can trip into the limits of time stated by the standard in case of detecting frequency levels out of the limits stated by the standard.

4.18.2.1 Frequency trip value tests

The tests have been made as the following procedure:

- For underfrequency protection: Starting from a frequency level 0.2 Hz above the trip value of the protection function to be tested, the frequency is decreased 0.05 Hz in steps of at least 150% of the trip time delay stated in the protection function to be tested.
- For overfrequency protection: Starting from a frequency level 0.2 Hz below the trip value of the protection function to be tested, the frequency is increased 0.05 Hz in steps of at least 150% of the trip time delay stated in the protection function to be tested.

	I	No Trip Test		Trip Test		
Protective Function Tested	Frequency value (Hz)	Time measured (s)	Trip	Frequency settling value (Hz)	Trip	Frequency trip value measured (Hz)
F< (Rep1)	47.20	> 1.5	⊠ NO	47.00		47.00
			□ YES		⊠ YES	
Ec (Ren2)	47 20	> 1.5	⊠ NO	47.00	□ NO	47.00
r< (Repz)	47.20		□ YES		⊠ YES	
Er (Ren3)	47.20	<15	⊠ NO	47.00	□ NO	47.00
1 < (itep3)	47.20	21.0	□ YES	47.00	⊠ YES	47.00
Ex (Pop1)	51.80	> 0.5	⊠ NO	52.00	□ NO	51.94
1 > (ixep i)	51.00	> 0.5	□ YES	52.00	⊠ YES	51.54
E (Ren2)	51.80	> 0.5	⊠ NO	52.00	□ NO	52.04
1 > (((ep2)	51.00	2 0.0	□ YES	52.00	⊠ YES	32.04
E> (Ren3)	51.80	> 0.5	⊠ NO	52.00	□ NO	52.01
i > (i/eh2)	51.00	> 0.0	□ YES	52.00	⊠ YES	52.01

Test results are offered in the following tables:

Maximum frequency deviation allowed is ±0.10 Hz.

Test results are graphically shown in following pages.

4.18.2.2 Frequency trip time tests

The tests have been made as the following procedure:

- For underfrequency protection: Maintaining the frequency with a value over the settling value during at least 1.5 seconds and then change the frequency to 46 Hz with a step.
- For overfrequency protection: Maintaining the frequency with a value below the settling value during at least 0.5 seconds and then change the frequency to 53 Hz with a step.

For underfrequency the standard states that the trip shall take place with a delay of at least 1 second and in less than 2 seconds, for overfrequency the condition stated by the standard is to trip in less than 0.2 seconds.

Protective	No Trip Test			Trip Test		
Function	Frequency value (Hz)	Time measured (s)	Trip	Frequency settling value (Hz)	Trip	Trip Time measured (ms)
F< (Rep 1)	47.10	> 1.5	⊠ NO □ YES	47.00	□ NO ⊠ YES	1280
F< (Rep 2)	47.10	> 1.5	⊠ NO □ YES	47.00	□ NO ⊠ YES	1260
F< (Rep 3)	47.10	> 1.5	⊠ NO □ YES	47.00	□ NO ⊠ YES	1270
F> (Rep 1)	51.90	> 0.5	⊠ NO □ YES	52.00	□ NO ⊠ YES	126
F> (Rep 2)	51.90	> 0.5	⊠ NO □ YES	52.00	□ NO ⊠ YES	130
F> (Rep 3)	51.90	> 0.5	⊠ NO □ YES	52.00	□ NO ⊠ YES	52

Test results are offered in the following tables:

Maximum frequency deviation allowed is ±0.10 Hz.

Test results are graphically shown in following pages.

4.19 SUSTAINED OPERATION FOR VOLTAGE VARIATIONS

Tests for verifying the limits sustained operation for voltage variations have been carried out according to the Clause 7.5.2 of the standard.

The inverter shall operate the automatic disconnection device within 3 seconds when the average voltage for a 10 min period exceeds the V_{nom_max} . The voltage value applied for V_{nom_max} is 255V for Australia and 246V for New Zealand.

For the test performed, it has been verified that the inverter trips when any of the calculated voltage averages for total of the three phase system is above Vnom_max.

The test has been repeated 3 times for verifying the accuracy of the voltage trip value and 1 additional time to verify the trip time.

The admissible tolerance between setting value and trip value of the voltage is at maximum $\pm 1V$.

4.19.1 Voltage trip value tests

Starting from a voltage level equal to Un, this voltage is maintained a considerable time verifying that voltage averages calculated in each line are close to Un.

Then, the output voltage is increased up to a voltage equal to the Vnom_max setting less 1V. This level is maintained for 5 minutes.

After this, the output voltage is increased up to a voltage equal to the Vnom_max setting plus 1V. This level is maintained up to the inverter trips and the voltage average value is recorded.

The table below offers test results obtained. Where the test procedure above mentioned has been applied.

	Threshold	No Trip Test			Trip Test		
Test	Value	Voltage	Time		Voltage		Trip voltage
number		value	measured	Trip	settling	Trip	average
	(•)	(V)	(s)		value (V)		value (V)
		Settir	ng according	to AS 60	038 for Austral	lia	
1	255.0	254.0	> 300	⊠ NO	256.0	□ NO	255.0
	200.0	234.0	> 300	□ YES	230.0	⊠ YES	200.0
2	255.0	254.0	> 300	⊠ NO	256.0	□ NO	255.0
2	200.0	\square 254.0 \square \square \square \square	□ YES	250.0	⊠ YES	200.0	
3	255.0	254.0	> 300	⊠ NO	256.0	□ NO	255.0
5	200.0	234.0	> 300	□ YES	230.0	⊠ YES	200.0
		Setting	according to	EC 6003	88 for New Zea	land	
1	246.0	245.0	> 300	⊠ NO	247 0	□ NO	245 9
•	240.0	240.0	2 000	□ YES	247.0	⊠ YES	240.0
2	246.0	245.0	> 300	⊠ NO	247.0	□ NO	245.9
2	240.0	240.0	> 300	□ YES	247.0	⊠ YES	240.0
з	246.0	245.0	> 300	⊠ NO	247.0	□ NO	245.9
5	2-0.0	2-0.0	- 300	□ YES	277.0	⊠ YES	240.9

After these test results, it is considered the most restrictive trip voltage average value for verifying the trip time. With this,

The Vnom_max is set to 255V in the following test:

The Vnom_max is set to 246V in the following test:

4.19.2 Trip time test

Starting from a voltage level equal to Un, this voltage is maintained a considerable time verifying that voltage averages calculated in each line are close to Un.

Then, the output voltage is increased up to a voltage equal to the Vnom_max setting calculated after the test 1. This level is maintained for 10 minutes.

After this, the output voltage is increased up to a voltage equal to the Vnom_max setting plus 2V. This level is maintained up to the inverter trips and the voltage average value is recorded. This trip time shall be less than 30 seconds.

The table below offers test results obtained, where the test procedure above mentioned has been applied.

Threshold	No Trip Test				Trip Tes	it	
Value	Voltage	Time	Trip	Voltage	Trip	Measured Trip	
(V)	value (v)	measured (s)		value (%0h)		time (ms)	
	Setting according to AS 60038 for Australia						
255	254 5	> 600	⊠ NO	257.0	□ NO	188	
200	200 204.0	2 000	□ YES	201.0	🖾 YES	100	
Setting according to IEC 60038 for New Zealand							
246	245 3	> 600	⊠ NO	246.9	□ NO	18/	
240	240.3	> 000	□ YES	240.9	🖾 YES	104	

4.20 SUSTAINED OPERATION FOR FREQUENCY VARIATIONS

Sustained operation for frequency variations has been measured according to the Clause 7.5.3 of the standard.

4.20.1 Response to an increase in frequency

According to the clause 7.5.3.1 the inverter must be able to comply with the following requirements:

- Test 1: Linear decrease of the active power up to disconnection in front of over frequency variations up to 52 Hz.
- Test 2: Hysteresis capability once over frequency variations are recovered up to 50.15Hz.

When the inverter's frequency returns to operate with f < 50.15 Hz, the active power must be recovered in both cases according to a power ramp limit and with a delay of at least 60 seconds.

Test results obtained are shown in the following tables and graphs.

Те	Test 1. Over frequency variations up to disconnection and active power recovery						
%Pn	Frequency (Hz)	Power measured (W)	Power desired (W)	ΔP (%P _M)			
	50.00	2485	2500	-0.60			
	50.10	2485	2500	-0.60			
	50.20	2485	2500	-0.60			
	50.30	2410	2429	-0.76			
	50.40	2251	2286	-1.41			
	50.50	2110	2143	-1.33			
	50.60	1992	2000	-0.32			
	50.70	1851	1857	-0.24			
	50.80	1696	1714	-0.72			
	50.90	1555	1571	-0.64			
	51.00	1401	1429	-1.13			
	51.10	1256	1286	-1.21			
	51.20	1126	1143	-0.68			
	51.30	984	1000	-0.64			
	51.40	854	857	-0.12			
	51.50	699	714	-0.60			
50 %	51.60	561	571	-0.40			
	51.70	432	429	0.12			
	51.80	276	286	-0.40			
	51.90	117	143	-1.05			
	52.00	-1	0	-0.04			
	52.10	-1	0	-0.04			
	52.20	-1	0	-0.04			
	52.00	-1	0	-0.04			
	51.80	-1	0	-0.04			
	51.60	-1	0	-0.04			
	51.40	-1	0	-0.04			
	51.20	-1	0	-0.04			
	51.00	-1	0	-0.04			
	50.80	-1	0	-0.04			
	50.60	-1	0	-0.04			
	50.40	-1	0	-0.04			
	50.20	-1	0	-0.04			

There is allowed a maximum tolerance for active power measurements up to $\pm 5\%$ of the staring power (P_M).

Test 2. Hysteresis capability and active power recovery							
%Pn	Frequency	Power measured (W)	Power desired (W)	ΔР (%Рм)			
	50.00	2489	2500	-0.44			
	50.10	2489	2500	-0.44			
	50.20	2489	2500	-0.44			
	50.30	2401	2429	-1.12			
	50.40	2244	2286	-1.69			
	50.50	2103	2143	-1.61			
	50.60	1988	2000	-0.48			
50 %	50.70	1847	1857	-0.40			
	50.80	1691	1714	-0.92			
	50.90	1550	1571	-0.84			
	51.00	1394	1429	-1.41			
	50.80	1394	1429	-1.41			
	50.60	1394	1429	-1.41			
	50.40	1394	1429	-1.41			
	50.20	1394	1429	-1.41			

There is allowed a maximum tolerance for active power measurements up to $\pm 5\%$ of the staring power (P_M).

Test results are graphically shown in following pages.

4.20.2 Response to a decrease in grid frequency

According to the clause 7.5.3.2, the inverter must be capable of supplying rated power between 49 Hz and 49.75 Hz for Australia.

- Test 1: Linear decrease of the active power up to disconnection in front of under frequency variations up to 49.0 Hz.
- Test 2: Hysteresis capability once over frequency variations are recovered up 49.5Hz.

When the inverter's frequency returns to operate with f > 49.85 Hz, the active power must be recovered in both cases according to a power ramp limit and with a delay of at least 60 seconds.

Test results obtained are shown in the following tables and graphs.

Test 1. Under frequency variations up to disconnection and active power recovery							
%Pn	Frequency (Hz)	Power measured (W)	Power desired (W)	ΔP (%P _M)			
	50.05	2518	2500	0.72			
	49.95	2532	2500	1.28			
	49.85	2532	2500	1.28			
	49.75	2519	2500	0.76			
	49.65	2184	2167	0.68			
	49.55	1848	1833	0.60			
	49.45	1447	1500	-2.12			
	49.35	1134	1167	-1.32			
	49.25	797	833	-1.44			
	49.15	487	500	-0.52			
50 %	49.05	152	167	-0.60			
50 /0	48.95	1	0	0.04			
	48.85	1	0	0.04			
	48.95	1	0	0.04			
	49.05	1	0	0.04			
	49.15	1	0	0.04			
	49.25	1	0	0.04			
	49.35	1	0	0.04			
	49.45	1	0	0.04			
	49.55	1	0	0.04			
	49.65	1	0	0.04			
	49.75	1	0	0.04			

There is allowed a maximum tolerance for active power measurements up to $\pm 5\%$ of the staring power (P_M).

Test 2. Hysteresis capability and active power recovery					
%Pn	Frequency	Power measured (W)	Power desired (W)	ΔР (%Рм)	
	50.00	2487	2500	-0.52%	
	49.90	2487	2500	-0.52%	
	49.80	2487	2500	-0.52%	
	49.70	2295	2333	-1.52%	
50 %	49.60	1990	2000	-0.40%	
	49.50	1659	1667	-0.32%	
	49.60	1658	1667	-0.36%	
	49.70	1659	1667	-0.32%	
	49.80	1659	1667	-0.32%	

There is allowed a maximum tolerance for active power measurements up to $\pm 5\%$ of the staring power (P_M).

Test results are graphically shown in following pages.

4.21 CONNECTION AND RECONNECTION PROCEDURE

According to the clause 7.7 of the standard, voltage and frequency conditions for allowing the connection or reconnection of the equipment to the grid are as follows:

- The voltage of the grid has to be maintained within the limits of AS 60038, for Australia, for at least 60 s.
- The frequency of the grid has to be maintained within the range 47.5 Hz to 50.15 Hz for at least 60 s.

4.21.1 Frequency Connection

Test results are offered in the following tables:

Frequency	No Connection Test			Connection Test		
Connection Value Limit	Frequency value (Hz)	Time measured (s)	Connection	Frequency value (Hz)	Connection	Time measured (s)
F ≥ 47.50	17 15	>120	⊠ NO	17 55	□ NO	70.80
Hz	47.45	>120	□ YES	47.55	🖾 YES	70.00
F ≤ 50.15	50.20	>120	⊠ NO	50.10	□ NO	72.60
Hz	50.50	2120	🗆 YES	50.10	⊠ YES	12.00

In addition to this requirement, it has been verified that according to the point 7.7 of the standard, the Control System of the inverter has a function to start connection following an adjustable Ramp Rate. In this case, the adjusted gradient has been an increasing rate of 100%Pn per minute.

Frequency	Gradient (ΔP)	Gradient	
Connection Value	desired	measured	
Limit	(%Pn/min)	(%P _n /min)	
F ≥ 47.50 Hz	≤ 100.0%	90.4%	
F ≤ 50.15 Hz	≤ 100.0%	95.8%	

Note: it has been considered a minimum delay of 60 seconds to proceed with the start-up once the equipment is inside the required ranges.

Test results are graphically shown in following pages.

4.21.2 Frequency Reconnection

Test results are offered in the following tables:

Frequency	No Reconnection Test			Reconnection Test		
Reconnectio n Value Limit	Frequenc y value (Hz)	Time measure d (s)	Reconnectio n	Frequenc y value (Hz)	Reconnectio n	Time measure d (s)
F ≥ 47.50 Hz	47.40	>120	⊠ NO □ YES	50.00	□ NO ⊠ YES	76.80
F ≤ 50.15 Hz	50.25	>120	⊠ NO □ YES	50.10	□ NO ⊠ YES	71.60

In addition to this requirement, it has been verified that according to the point 7.7 of the standard, the Control System of the inverter has a function to start reconnection following an adjustable Ramp Rate. In this case, the adjusted gradient has been an increasing rate of 100%Pn per minute.

Frequency Reconnection Value Limit	Gradient (ΔP) desired (%P _n /min)	Gradient measured (%P _n /min)	
F ≥ 47.50 Hz	≤ 100.0%	90.9%	
F ≤ 50.15 Hz	≤ 100.0%	94.9%	

Note: it has been considered a minimum delay of 60 seconds to proceed with the start-up once the equipment is inside the required ranges.

Test results are graphically shown in following pages.

4.21.3 Voltage Connection

Test results are offered in the following tables:

Voltage	No Connection Test			Connection Test		
Connection Value Limit	Voltage value (%Un)	Time measured (s)	Connection	Voltage value (%Un)	Connection	Time measured (s)
V ≥ 94.0% Un	94.0%	>120	⊠ NO □ YES	94.7%	□ NO ⊠ YES	70.80
V ≤ 110.0% Un	110.0%	>120	⊠ NO □ YES	109.4%	□ NO ⊠ YES	74.40

The standard states that the tolerance limit for voltage connection values is ± 2 V, which is a 0,8% Un over 230 V, the reference voltage considered by the standard. So 0.8% Un is the allowed tolerance to be considered for voltage connection value tests.

In addition to this requirement, it has been verified that according to the point 7.7 of the standard, the Control System of the inverter has a function to start connection following an adjustable Ramp Rate. The following table shows the programmed gradient for the different reconnections:

Voltage	Gradient (ΔP)	Gradient	
Connection Value	desired	measured	
Limit	(%P _n /min)	(%P _n /min)	
V ≥ 94.0% Un	≤ 100.0%	90.0%	
V ≤ 110.0% Un	≤ 100.0%	90.0%	

Note: it has been considered a minimum delay of 60 seconds to proceed with the start-up once the equipment is inside the required ranges.

Test results are graphically shown in following pages.

4.21.4 Voltage Reconnection

Test results are offered in the following tables:

Voltage	No Reconnection Test			Reconnection Test		
Reconnection Value Limit	Voltage value (%Un)	Time measured (s)	Reconnectio n	Voltage value (%Un)	Reconnectio n	Time measured (s)
V ≥ 94.0% Un	94.0%	>120	⊠ NO □ YES	94.7%	□ NO ⊠ YES	71.20
V ≤ 110.0% Un	110.0%	>120	⊠ NO □ YES	109.4%	□ NO ⊠ YES	78.00

The standard states that the tolerance limit for voltage reconnection values is ± 2 V, which is a 0,8% Un over 230 V, the reference voltage considered by the standard. So 0.8% Un is the allowed tolerance to be considered for voltage reconnection value tests.

In addition to this requirement, it has been verified that according to the point 7.7 of the standard, the Control System of the inverter has a function to start reconnection following an adjustable Ramp Rate. The following table shows the programmed gradient for the different reconnections:

Voltage	Gradient (ΔP)	Gradient	
Reconnection Value	desired	measured	
Limit	(%P _n /min)	(P _n /min)	
V ≥ 94.0% Un	≤ 100.0%	90.0%	
V ≤ 110.0% Un	≤ 100.0%	91.5%	

Note: it has been considered a minimum delay of 60 seconds to proceed with the start-up once the equipment is inside the required ranges.

Test results are graphically shown in following pages.

4.22 SECURITY OF PROTECTION SETTINGS

The inverter complies with the following requirements according to Clause 7.8 of the standard:

a) The inverter has been checked by inspection that changes to the internal setting shall require the use of a tool and special instructions not provided to unauthorized personnel.

b) The installer-accessible settings of the automatic disconnection device are capable of being adjusted within the limits specified in Clause 7.5 of the standard.

c) The manufacturer settings of the automatic disconnection device, specified in Clause 7.4 of the standard, are secured against changes.

4.23 MULTIPLE INVERTER COMBINATION

According to the clause 8 of the standard, Inverter energy systems are often comprised of multiple inverters used in combination to provide the desired inverter energy capacity or to ensure that voltage balance is maintained in multiple phase connections to the grid.

Possible combinations could be single-phase inverters used in parallel, single-phase inverters used in multiple phase systems.

The inverter under testing doesn't have any of these function incorporated in his control system, so this point is not applicable.

4.24 INVERTER MARKING AND DOCUMENTATION

The inverter is in compliance with marking and documentation requirements of IEC 62109-1, IEC 62109-2, and Clause 9 according AS/NZS 4777.2:2015

 IEC 62109-1 and IEC 62109-2: test report nº BL-SZ1998124-B01 on 2019/04/22 which issued by Shenzhen BALUN Technology Co., Ltd.

According to points 9.2.4 and 9.2.5 the unit shall be marked with the following external or auxiliary systems if those are required to comply with the requirements from the standard:

External equipment requirement	Required (Yes or No?)
Isolation transformer	No
RCD / earth fault detection	No
External automatic disconnector (DRM0)	No
External device to enable extra DRM modes	No

	AS/NZS 4777.2 : 2015					
Clause	Requirement - Test	Result - Remark	Verdict			
9	INVERTER MARKING AND DOCUMENTATION	Р				
9.1	General	Р				
	The inverter shall comply with the marking and documentation requirements of IEC 62109-1 and IEC 62109-2, as varied by this Clause (9).		Ρ			
	All markings and documentation shall be in the English language.		Р			
9.2	Marking		Р			

			Mandiat
	Requirement - Test	Result - Remark	Verdict
9.2.1	General The following variations apply to the marking		P
	IEC 62109-2		
	 (a) Inverters that are designated for use in inverter energy systems incorporating energy sources other than PV arrays or batteries shall bear additional or alternative markings appropriate to the energy source. 		P
	(b) Inverters that are designated for use in closed electrical operating areas shall be marked with a warning stating that they are not suitable for installation in households or areas of a similar type or use (i.e. domestic).	Not used in closed electrical operationg areas.	N/A
9.2.2	Equipment ratings		Р
	The inverter shall be marked with its ratings and the ratings of each port, as specified in Table 15. Only those ratings that are applicable to the type of inverter are required. The ratings shall be plainly and permanently marked on the inverter, in a location that is clearly visible after installation.		Ρ
9.2.3	Ports		Р
	Each port shall be marked with its classification and indicate whether a.c or d.c. voltage as appropriate.		Ρ
	Typical classifications include the following:		Р
	(a) PV (photovoltaic).		Р
	(b) Wind turbine.		N/A
	(c) Energy storage.		N/A
	(d) Battery.		Р
	(e) Generator.		N/A
	(f) Grid-interactive.		Р
	(g) Stand-alone.		Р
	(h) Communications (type).		Р
	(i) DRM.		Р
	(j) Load.		Р
9.2.4	External and ancillary equipment		N/A
	If the inverter requires external or ancillary equipment for compliance with this Standard, the requirement for any such equipment shall be marked on the inverter along with the following or an equivalent statement: 'Refer to		N/A

	AS/NZS 4/1/.2 : 2	015	
Clause	Requirement - Test	Result - Remark	Verdict
	the installation instructions for type and ratings' or symbol.		
	Any external or ancillary equipment shall be marked in accordance with this Clause (9).		N/A
9.2.5	Residual current devices (RCDs)		Р
	Inverter energy systems used with PV array systems require residual current detection in accordance with IEC 62109-1 and IEC 62109- 2. The requirements can be met by the installation of a suitably rated RCD external to the inverter or by an RCMU integral to the inverter.	An RCMU integral to the inverter used	P
	Where an external RCD is required, the inverter shall be marked with a warning along with the rating and type of RCD required. The warning shall be located in a prominent position and written in lettering at least 5 mm high. It shall contain the following or an equivalent statement:		N/A
	WARNING: AN RCD IS REQUIRED ON THE [NAME] PORTS OF THE INVERTER		N/A
	If the inverter energy system requires a Type B RCD, the inverter shall be marked with a warning. The warning shall be located in a prominent position and written in lettering at least 5 mm high. It shall contain the following:		N/A
	WARNING: A TYPE B RCD IS REQUIRED ON THE [NAME] PORTS OF THE INVERTER		N/A
9.2.6	Demand response modes		Р
	The demand response modes supported by the inverter should be permanently marked on the name plate or on a durable sticker located on or near the demand response interface port to indicate the demand response modes of which the unit is capable.	DRM 0	Ρ
	Figure 9 illustrates an acceptable form of marking. If this form of marking is used, each box shall contain a tick or a cross (if the inverter has that capability) or remain blank (if it does not have that capability). Alternatively, only the modes supported may be marked.		P
	If the physical interface is a terminal block, then—	Terminal block used	Р
	(a) the terminals shall be engraved or otherwise durably marked; or		Р
	(b) a permanent label with 'DRM Port' shall be affixed near the terminal block.		Р
	The marking shall indicate which terminal corresponds to which demand response mode.		Ρ

AS/NZS 4777.2 : 2015					
Clause	Requirement - Test	Result - Remark	Verdict		
	The range of markings is indicated against Pins 1 to 6 in Table 7.	DRM 0	P		
9.3	Documentation	1	Р		
9.3.1	General		Р		
	The documentation supplied with the inverter shall provide all information necessary for the correct installation, operation and use of the system and any required external devices including information specified in Clause 9.2.		P		
	All inverters, including those intended for use in systems incorporating energy sources other than PV arrays or batteries, shall comply with the documentation requirements of IEC 62109- 1 and IEC 62109-2.		P		
9.3.2	Equipment ratings		Р		
	The documentation supplied with the inverter shall state the ratings of the inverter and the ratings for each port, as specified in Table 16. Only those ratings that are applicable to the type of inverter are required.		P		
	For equipment with rated current greater than 16 A per phase, additional documentation requirements apply. See Clause 5.7.		Ρ		
9.3.3	Ports		Р		
	In addition to the requirements of Clause 9.3.2, the documentation supplied with the inverter shall state the following for each port, as a minimum:		Ρ		
	(a) Means of connection.		Р		
	(b) For pluggable equipment type B, the type of matching connectors to be used.		Ρ		
	(c) External controls and protection requirements.		P		
	(d) Explanation of terminals or pins used for connection including polarity and voltage.		P		
	(e) Tightening torque to be applied to terminals.		N/A		
	(f) Instructions for protective earthing.		Р		
	(g) Instructions for connection of loads and installation of RCD protection to stand-alone ports.		N/A		
	(h) The decisive voltage class (DVC).		P		
9.3.4	External and ancillary equipment		N/A		
	Where an inverter or multiple inverter combinations requires external or ancillary		N/A		

AS/NZS 4777.2 : 2015					
Clause	Requirement - Test equipment for compliance with this Standard, the documentation shall—	Result - Remark	Verdict		
	(a) state the requirement for any such equipment;		N/A		
	(b) provide sufficient information to identify the external or ancillary equipment, either by manufacturer and part number or by type and rating; and		N/A		
	(c) specify assembly, location, mounting and connection requirements.		N/A		
9.3.5	RCDs		N/A		
	Where an external RCD is required, the following or an equivalent statement shall be included in the documentation: 'External RCD Required'. The documentation shall also state the rating and type of RCD required and provide instructions for the installation of the RCD.	An RCMU integral to the inverter used	N/A		
9.3.6	Multiple mode inverters	Not Multiple mode inverters	N/A		
	Where the inverter is capable of multiple mode operation, the documentation shall include the following:		N/A		
	(a) Ratings and means of connection to each source of supply to the inverter or output from the inverter.		N/A		
	(b) Any requirements related to wiring and external controls, including the method of maintaining neutral continuity within the electrical installation to any stand-alone ports as required.		N/A		
	(c) Disconnection means and isolation means.		N/A		
	(d) Overcurrent protection needed.		N/A		
9.3.7	Multiple inverter combinations	No in such used	N/A		
	Where an inverter has been tested for use in a multiple inverter combination as per Clause 8, the documentation shall include the following:		N/A		
	(a) Valid combinations of inverters.		N/A		
	(b) Installation instructions for correct operation as a multiple inverter combination.		N/A		

5 PICTURES

There are two types of enclosures are offered by the manufacturer, one is IP 20 and another is IP 65. Both types are in three colors (White, blue and black). Refer to the pictures below for details.

Connectors for IP 20

S	erial Number and Software Version
	Device Info Mermat Device Info Mermat Main: Verola Main: Verola Aarms Code Occurred Device

6 ELECTRICAL SCHEMES

-----END OF REPORT-----